
Socially Compliant Path Planning

Abhijat Biswas, Ting Che Lin, Sean Wang

I. INTRODUCTION

Robots that share space with humans are becoming in-
creasingly common. Mobile robots especially, need to be
aware of humans and associated conventions when interact-
ing with them. Hence, humans cannot be treated in the same
way as moving obstacles that are to merely be avoided. For
example, robots must know not to cut-off moving pedestrians
and instead, either yield to them or take an alternate route.

II. OVERVIEW

We wanted to use representative pedestrian trajectory data.
So, we use the Stanford Drone Dataset for real pedestrian
data. A sample frame are in Fig. 1.

The dataset has videos recorded from an aerial view with
individual pedestrain bounding boxes annotated over time.

A. Math formulation

We formulated our problem as a time-limited horizon
search-based planning problem on a grid world. See Fig 1

Fig. 1: Example frame and formulation. Gridworld is illus-
trative. Actual gridworld is at pixel level

More details about the planner are in Section IV.

B. Software

Our planning algorithm is written in C++ and the rest
of our system, including the Social-LSTM based trajectory
prediction, costmap calculation, and simulation is in Python.
We use the brilliant XTensor and pybind11 to allow our C++
planner to modify the python side costmap. This combination
allows us to communicate between C++ and Python in a non-
copying fashion.

III. PEDESTRIAN TRAJECTORY FORECASTING

Our trajectory forecasting pipeline utilizes Social-LSTM1

network for pedestrian path prediction. The network is
trained on the deathCircle, gates, coupa, and nexus scenes
of the Stanford Drone dataset2 for 20 epochs. We used the
modified version of the network implemented by Anirudh
Vemula3.

The network directly predicts the Bivariate Gaussian dis-
tribution of the future location of the pedestrians, or, more
simply, the probability that the pedestrian will be at a certain
location at a specific time. The future trajectories for every i
pedestrian is obtained by sampling the predicted distribution.

trajectoryi ∼ p(future trajectoryi|past trajectoryi)
(1)

For this project, in order to demonstrate real time demo,
we pre-computed the predicted distribution of the future
trajectories and saved it to disk. During planning, we then
queried the predicted distribution at the specified time stamp
and utilizes the trajectory distribution as the Social Cost func-
tion. The Social Cost at every time steps for N pedestrians
can be calculated as the following.

ct =

N∑
i

p(future trajectoryi,t|past trajectoryi,t) (2)

(a) (b)

Fig. 2: (a) Sampled Prediction Trajectory (b) The Corre-
sponding Social Cost

IV. PATH PLANNING

A. State and Cost

Since the trajectory prediction of the pedestrians are time
dependent, the cost of movement of the robot will not only

1http://cvgl.stanford.edu/papers/CVPR16 Social LSTM.pdf
2http://cvgl.stanford.edu/projects/uav data/
3https://github.com/erichhhhho/social-lstm-pytorch

http://quantstack.net/xtensor
https://pybind11.readthedocs.io/en/master/


depend on the robot’s location, but also the time of the
movement. For this reason, the state of the robot needs to
include time when planning (s = (x, y, t)). For the cost
function, we wanted to include the distance traveled as well
as the likely hood of running over a pedestrian. To do this,
we used the following cost function.

c(s1, s2) = D(s1, s2) + P (x(s2), y(s2), t(s2)) (3)

D(s1, s2) gives the euclidean distance between states
s1 and s2. P (x(s2), y(s2), t(s2)) gives the social cost of
moving to state s2 and can be calculated using the previously
mentioned method.

B. Algorithm Used

For this problem, since we could only predict human paths
into the near future, we wanted to use a search algorithm that
searched for partial paths into the near future. We decided
to use a variation of RTAA*, where a number of states are
expanded, then the robot follows the optimal path to the
state s = argmins′∈openg(s

′) + h(s′), or the state in the
open set with the lowest f value. However, in our variation,
the number of states expanded each time was not fixed,
instead the expansion of states keeps happening until either
the next state to expand has a time that is greater than the
last prediction time, or is the goal. By doing so, the path
returned will either bring the robot to the goal, or will be a
partial path, with a low cost of traversal, to a state with a
low heuristic value. If it returns a partial path, it will take
the same amount of time to traverse as time until the last
predition.

For the heuristic, we ignored time and the predictions
and just used euclidean distance. This is guaranteed to
be admissible since the prediction values are non-negative.
Furthermore, this heuristic is consistent. Since we know that
euclidean distance satisfies the triangle inequality, h(s) ≤
D(s, succ(s)) + h(succ(s)). Furthermore, since we know
that the cost is greater than euclidean distance, h(s) ≤
c(s, succ(s) + h(succ(s)).

The pseudo-code for the search algorithm used is in
Algorithm 1

Algorithm 1 Partial Path Search Algorithm

1: procedure SEARCH(sstart, sgoal, P )
2: tlimit = time of last prediction
3: s = argmins′∈openg(s

′) + h(s′)
4: while s 6= sgoal and t(s) < tlimit do
5: remove s from open and insert into closed;
6: for every s′ ∈ succ(s) that is not in closed do
7: if g(s′) > g(s) + c(s, s′) then
8: g(s′) > g(s) + c(s, s′);
9: insert s′ into open

10: s = argmins′∈openg(s
′) + h(s′)

11: backtrack from s and return path to robot

Fig. 3: Intermediate path plan with overlaid pedestrian tra-
jectory prediction-based costmaps. The goal is at the white
star (bottom right)

Fig. 4: Sample completed path plan. Faint red lines show the

V. RESULTS AND DISCUSSION

Average planning times: Typical planning times are
under 50 milliseconds. However, in the worst case (densely
packed locations with lots of obstacles and multiple trajec-
tory predictions) we have observed worst case planning times
upto 6 seconds. We plan for a horizon of 4 seconds. The
average planning time is 0.51 seconds

Our grid sizes are the same as the pixel resolution of the
frames from the camera. For the scenario in Fig 4, this is
1088× 1424.

VI. DEMO AND CODE

Demo video is here. Code can be found here, including a
README with instructions to run it.

https://www.youtube.com/watch?v=aBGHSeXeBdE
https://github.com/ajdroid/SocAwNav782

	Introduction
	Overview
	Math formulation
	Software

	Pedestrian Trajectory Forecasting
	Path Planning
	State and Cost
	Algorithm Used

	Results and Discussion
	Demo and Code

