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Abstract— Imitation Learning (IL) algorithms such as be-
havior cloning are a promising direction for learning human-
level driving behavior. However, these approaches do not
explicitly infer the underlying causal structure of the learned
task. This often leads to misattribution about the relative
importance of scene elements towards the occurrence of a
corresponding action, a phenomenon termed causal confusion
or causal misattribution. Causal confusion is made worse in
highly complex scenarios such as urban driving, where the
agent has access to a large amount of information per time
step (visual data, sensor data, odometry, etc.). Our key idea
is that while driving, human drivers naturally exhibit an
easily obtained, continuous signal that is highly correlated
with causal elements of the state space: eye gaze. We collect
human driver demonstrations in a CARLA-based VR driving
simulator, DReyeVR, allowing us to capture eye gaze in the
same simulation environment commonly used in prior work.
Further, we propose a contrastive learning method to use gaze-
based supervision to mitigate causal confusion in driving IL
agents — exploiting the relative importance of gazed-at and
not-gazed-at scene elements for driving decision-making. We
present quantitative results demonstrating the promise of gaze-
based supervision improving the driving performance of IL
agents.

I. INTRODUCTION

Imitation learning (IL) is a popular method for learning
urban driving policies due to its ease of implementation and
de-coupling of the data collection/action step and the training
step by allowing offline learning of control, among other
factors. However, it does not explicitly model the underlying
causal structure of the task, instead inferring causality from
strongly correlated elements of the state space that occur
before specific actions are performed. This results in a policy
that does the right things for the wrong reasons in the training
distribution and thus doesn’t generalize well at test time.

While a policy is a causal function mapping observations
to particular actions, it is often difficult to identify which un-
derlying state variables caused the policy to take a particular
action. This is made more complex by the fact that instead of
observing the state directly, the policy uses observations—
i.e camera images, which are themselves a function of the
state variables. It is then difficult to attach a particular
state variable to any particular pixel. Causal confusion then
arises when an undesirable state variable triggers a particular
action.
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Fig. 1: Outline of training for imitation learning with gaze as
a supervisory signal for approximating causal information in
the scene. Here gaze pixels represent a noisy approximation
of the causal pixels in the RGB image space, while the causal
pixels are an abstraction of the causal scene elements. Gaze
is only required at train time.

In the original paper identifying causal confusion [1],
the authors use an example of a realistic driving setting to
illustrate this phenomenon where, counter-intuitively, access
to more information yields poorer task performance by the
imitation learning agent. In the aforementioned example, an
IL agent learns from demonstration images from inside the
cab of a vehicle with and without a brake light indicator
on the dash. When a brake light is present (and always on
when the brake is applied), the agent may learn to brake only
when the brake light indicator is on. This is an undesirable
misattribution of cause and effect.

Several additional works exist in which history-based imi-
tation models perform worse than their counterparts without
access to this historical information, especially during driving
(see Sec 4.7 from [2] for a review). For instance, in [3],
imitation learning policies are trained with and without
”history” information about the car’s past trajectory as input.
The model with history has better performance on held-out
demonstration data but much worse performance when de-
ployed, indicating that causal confusion is occurring. Another
example is in [4], where they identify a failure mode where
the training data displays a tendency to stay static at a full
stop, leading to a strong correlation between low speed and



not accelerating in the final policy. This leads to the final
policy staying stopped at stop lights even after they turn
green.

The most straightforward resolution to the causal confu-
sion problem would be to simply learn the correct underlying
causal structure. De Haan et al. propose methods using
targeted interventions (DAgger-like expert queries [5] or
GAIL-like environment interaction [6]) to prune a set of 2N

causal hypotheses where N is the dimensionality of the state
space. This is a large search space for visuomotor tasks like
driving, where the state-space dimensionality is often in the
millions. Moreover, expert queries or environment interaction
in the training loop can often be too expensive to be a feasible
solution.

Taking a complementary approach, we seek to use a signal
that human drivers naturally exhibit while operating vehicles
which is highly correlated with causal parts of the state
space — eye gaze. Our idea is to use driver eye gaze as a
supervisory signal, alongside driving control, to highlight the
lower dimensional parts of the (very high-dimensional) visual
state space that the driver fixated on before making their
driving decision. Specifically, we use a contrastive learning
formulation to encourage visuomotor IL driving policies to
change driving decisions based on visual information in the
fixated-at regions. This gaze supervision seeks to mitigate
causal confusion by directing the causal function of the
policy towards the variables of the observation (clusters of
pixels), which correspond to an underlying state variable
that the human believes is causal to the optimal behavior,
as outlined in Fig. 1.

The benefit of using eye gaze from human driving demon-
strators is that it is essentially “free”, i.e. it is a signal that
is naturally exhibited by humans as they drive. Importantly,
it does not require additional labeling or intervention from
human experts and is non-intrusive, with gaze data being
able to be collected with a pair of wearable glasses or even
in-cabin sensors. In fact, some data-collection vehicles are
already instrumented with cabin-facing visual or infrared
sensors, that can be used to obtain traffic-scene registered
eye gaze directly. For this work, we used eye gaze collected
from a driver using a VR simulator with eye tracking built
into the VR headset (Fig. 3).

We propose a gaze-based contrastive supervision method
to incorporate driver gaze into policy training and show
that finetuning a pre-trained IL driving policy using our
method results in better driving performance than the pre-
trained model. Our formulation encourages the trained policy
network’s driving actions to be affected by gazed-at regions.
Further, the fine-tuned method’s saliency better matches
drivers’ attention as indicated by their gaze. In summary,
we investigate the utility of natural driver eye gaze-based
supervision as a tool for mitigating causal confusion in
imitation learning-based driving agents. We contribute:

• a novel dataset of human driving with actions and
associated eye gaze in a CARLA-based VR simulation,

• a gaze-based contrastive supervision formulation for
fine-tuning learned models for gaze, and

• experimental results quantifying the performance im-
provements in simulated driving scenarios with gaze
supervision.

II. RELATED WORK

Gaze is a common non-verbal physiological signal used to
infer operators’ intent. In robotics, gaze has been used widely
from understand people’s preferences over objects [7], [8]
for facilitating smoother handovers, to facilitating shared
autonomy by inferring goals in an assistive feeding task [9]
or the next step in a multi-stage manipulation task [10].
Gaze has also been used as a supervisory signal. In work
with simulated agents, the Atari-HEAD dataset represented
a high-quality dataset with expert human performance and
gaze [11] which subsequent works [12], [13] took advantage
of to improve Atari game playing performance. In the driving
context, Xia et. al show that gaze-informed models can
predict ego vehicle speed in pedestrian-involved situations
more effectively than non gaze models [14].

While the above survey indicates wide-ranging use of
gaze as a supervisory signal, public datasets with driver
gaze paired with driving action and sensor information are
uncommon. The closest two works to ours in the driving
domain, “A Gaze Model Improves Driving” [15] and Gaze
Modulated Dropout [16] have several differences from us:
First, both formulations require gaze information from the
driver at test time. Since gaze is not available from a human
source at test time, they use a learned gaze model to predict
gaze maps, which introduces additional learnable parameters
and sources of error. Second, their domain is limited to high-
way driving, which mostly involves lane maintenance and
occasional overtaking, a far simpler driving paradigm than
urban driving featured in our dataset. Third, the gaze data
was collected by showing participants highway driving on a
23 inch screen which limits the naturalness of demonstrator
gaze by constraining the field of view and not allowing head
movement to change the viewpoint. In contrast, the data
collected in the DReyeVR simulator allows participants to
naturally move their viewpoint by moving their head in VR.
Fourth, their gaze & driving data is not available publicly
whereas our data is publicly available in a replayable format
that allows arbitrary visual sensing configurations from any
perspective to be generated posthoc which can be used by
models using varied sensor configurations.

The closest work to ours outside the driving domain is
by Saran et al [13] where the authors explored the use of
human gaze to guide imitation learning agents. Saran et
al. propose a gaze prediction task as an additional head
on an imitation learning agent. In their design, the gaze
prediction head is attached to the last convolutional layer
of the policy network and a 1x1 convolution is used to
predict the associated gaze map at that resolution (generally
much smaller than input). While this method has the some
similar properties as ours, such as not adding any additional
learnable parameters for the deployed model, it has one
major difference: it requires an intervention in the model
architecture at the last convolutional layer. To understand



the limits of such an intervention, consider an object-based
driving policy (such as the recent PlanT [17]) where there are
no convolutional layers at all and traffic and route elements
are input as tokens. In such a setting, the gaze coverage
loss would be difficult to apply, but our contrastive training
could be performed by masking out tokens at not-gazed-
at or gazed-at locations. We do not perform evaluations on
PlanT since it directly takes in the state of relevant traffic
lights from the simulator and is inadmissible on the CARLA
leaderboard.

Their work studied the effect of gaze on improving
performance on a larger gaze dataset and simpler domain,
600 minutes of player gaze data during ATARI gameplay,
as opposed to about 70 minutes in the more complex
and dynamic simulated sensor-based driving environment of
CARLA/DReyeVR. Finally, while they did explore the effect
of gaze supervision in mitigating causal confusion, the exper-
iment has some differences from ours. That work relies on
a manually constructed causal confusion trap, intentionally
localizing historical state information to a specific and fixed
area of the state space. In contrast, our work deals with a
more dynamic domain, where state information that may lead
to causal confusion is not confined to specific regions, posing
a more complex and naturally-occurring problem.

III. CAUSAL CONFUSION IN IMITATION LEARNED
DRIVING AGENTS

As an example algorithm for exploring causal confusion
in IL-based driving agents, we consider the popular and
well-established Learning by Cheating (LBC) [18] model for
autonomous urban driving in CARLA. This method uses a
two-step approach where a teacher model is first trained with
access to ground truth, overhead-view semantic segmentation
maps around the ego-vehicle (approaching perfect percep-
tion). Then, this agent is used as an oracle to train a senso-
rimotor agent that only has access to RGB (left/center/right
views) sensor data and a high-level command from a global
plan. We use the latest author-provided code and model [19],
which is a slight deviation from the original paper [18].
Of particular note, the LBC sensorimotor model takes a
ten-channel image as input where nine channels correspond
to three RGB images (left, center, right) and the last is
a heatmap with the only “hot” region being a Gaussian
distribution centered at the next waypoint in the frame of
the center camera.

As one may expect, the LBC model also shows symptoms
of suffering from causal confusion. Anecdotal descriptions
from the authors can be found in [20]: “I believe that the
network has some issues with starting/stopping”. These prob-
lems seem to occur primarily in the absence of surrounding
vehicles which may be wrongly used as causal cues.

We especially notice traffic light infractions where the
LBC agent either does not stop for a red light or fails
to restart after stopping at a red light. We also observe
cases where the agent stops at a red light but restarts when
opposing traffic moves, even though the red light has not
changed.

Fig. 2: Salience map generated by using blur-based saliency
(details: Sec. III-A) for the pre-trained Learning by Cheating
IL model [18]. The center input image to the model is
shown with salience overlaid. This scene depicts the instant a
vehicle comes to a stop after which it fails to restart. Notably,
the bulk of salience weight is at the traffic light’s base — a
non-causal region which indicates causal misattribution.

In more recent works such as Transfuser [21] and
PlanT [17], we see special heuristics or inputs to tackle
problems due to causal confusion. The Transfuser agent uses
a “creeping” behavior that gives the ego vehicle a small
velocity if it has not moved in 55 seconds. It is used along
with a safety heuristic that stops the car if there is a lidar hit
in front of the vehicle. The PlanT model uses a privileged
input to deal with this problem: it directly reads the state
of the relevant traffic light from the simulator which is a
lower dimensional causal signal. Consequently, it is also not
validated on the official leaderboard. In this work, we are
focused on exploring gaze as a supervisory signal that can
act as a proxy for high dimensional causal variables, so we
performed our experiments with a popular, validated method
(LBC) which does not have associated heuristics.

A. Saliency-based causal confusion diagnosis

To investigate the relative importance of regions of the
input state space in making decisions, we used a saliency
method to investigate the decision-making process of the
LBC model. Specifically, we used the blur-based saliency
method by Greydanus et al. [22]. This method is designed
to identify which spatial regions of the visual input are most
salient for the action produced by a given deep visuomotor
policy network. The method is network architecture agnostic
and works by blurring different regions of the given visual
input and measuring the difference in output with the original
input. It reasons that input image regions, which, when
blurred, cause the greatest difference in the agent’s policy
network output, are the most salient.

The original method was designed to work with Atari
playing agents with inputs that were a single image per
timestep. A uniform grid is sampled over each input image
and a blur centered at each sample location is performed
independently to construct the modified inputs for salience
calculation. However, in the typical CARLA-based driving



(a) Physical setup with participant driver in
driving pose, alongside experimenter’s setup
monitoring the simulation.

(b) First person DReyeVR simulator perspective during the same episode with eye reticle
(red crosshair) denoting eye gaze on in-world navigational sign that gives drivers route
direction. The crosshair is only for illustration (not shown in VR).

Fig. 3: Experimental setup during gaze data collection.

formulation, at each timestep, multiple images with varying
amounts of overlap are used to represent the scene. Con-
sequently, we modify the aforementioned method such that
the blur salience is calculated only for the middle image.
However, when a portion of the middle image is blurred, we
also blur the corresponding region in the left (or right, as
applicable) image so that the target space is blurred when
input to the policy network.

Using this blur-based saliency measure, we can generate
saliency maps for the LBC method, such as in Fig 2. The
figure shows a vehicle stopped at a red light the frame before
it turns green. Here, most of the salience lies erroneously on
non-causal parts of the input image, such as the base of the
traffic light.

B. Relationship Between Gaze Supervision and Causal Con-
fusion

The causal relationship described in Fig. 1 can be for-
malized in terms of a Structural Causal Model (SCM). The
state space S can be represented as a set of n causal
variables S := {S1, . . . ,Sn}, representing other vehicles,
pedestrians, time of day, trees, etc., while the random variable
S represents the distribution over particular state values. The
observation space O, is determined by a causal function
f of the underlying state f : S → O. Here, the random
variable O represents the distribution of observation values.
Given a state, a particular observation variable Oi will
not have equivalent counterfactual dependence on all state
variables. This means there exists some causal variable Si

where an intervention to s′i will have a significant effect on
the distribution of observation variable Oi: P (oi|s, do(Si =
si)) ̸= P (oi|s, do(Si = s′i)). There also exists causal
variable Sj which has little effect on the distribution of Oi:
P (oi|s, do(Sj = sj)) ̸= P (oi|s, do(Sj = s′j)). In practice,
this is the assumption we make about gaze: that the cluster
of gaze pixels g ∈ G, which is a collection of {oi ∀i ∈ G}
is causally dependent on a state variable that the optimal
policy should depend on.

Next, we can observe the causal relationship between the

policy π and the observation O. A policy is a mapping from
observation to actions: π : O → Φ, where Φ is the space
of actions. We abuse notation by representing the random
variable for actions as Φ. For a cluster of gaze pixels g ∈ G,
our method applies two interventions in the form of pertur-
bations on the observation p+/− : O × G → O, where p−
applies the perturbation to the gaze regulated components of
the observation g, and p+ applies the perturbation to the gaze
unregulated components ḡ. By applying these interventions,
the loss ensures that P (Φ = π(o)|do(O = p+(o, g))) −
P (Φ = π(o)|do(O = p−(o, g))) > α. Intuitively, this
enforces the policy to be robust to perturbations of the non-
gazed variables and sensitive to perturbations of the gaze
variables.

Combining these insights, our operation enforces both
interventional dependence on the state variables that generate
the gaze and independence on the state variables not gazed
at. In other words, for a gazed state variable Si = si,
P (Φ = ϕ|do(Si = si)) ̸= P (Φ = ϕ|do(Si = s′i)) for
some values of s′i, and for ungazed state variable Sk = sk,
P (Φ = ϕ|do(Sk = sk)) = P (Φ = ϕ|do(Sk = s′k)). By
aligning which causal state variables the policy is dependent
on to salient features, our method reduces causal confusion.

IV. METHOD

Our method seeks to use human drivers’ natural eye
gaze as a supervisory signal for imitation-learned driving
agents to help mitigate causal confusion. We collect driving
demonstrations and driver eye gaze in a VR based driving
simulation and incorporate gaze supervision as an auxiliary
contrastive loss to existing driving imitation policies.

A. Gaze data collection

Human demonstration data was collected in the DReyeVR
simulator [23], a modified version of the CARLA simulator
to enable human driving in VR. DReyeVR also enables
the collection of driver eye gaze as they use the simulator.
Drivers were tasked with completing a navigational sign



following task (see Fig. 3b), and their driving actions (steer-
ing, throttle, brake), as well as eye gaze movements, were
recorded.

Eye gaze was collected at the simulator rate, about 50Hz.
Eye gaze can be a noisy and high-frequency signal. To
correct for this, we performed pre-processing in the following
manner. First, driver eye gaze movements were classified
into low-velocity fixations and high-velocity saccades using
I-BMM, an off-the-shelf gaze event classifier [24]. Then, sac-
cades were discarded (during saccades, drivers are moving
their eyes between fixation points and cannot pay attention to
the point of regard). Finally, fixations were aggregated into
attention maps by initializing a Gaussian distribution (σ = 2)
centered at each fixation point and aggregating these across
a 15 second window of gaze history. LBC uses data from the
simulator at 2Hz meaning each frame’s associated attention
map was composed of a maximum of 30 gaze points (some
are discarded due to being saccades). This eye gaze was
obtained in the form of 3D gaze coordinates in the virtual
CARLA world, allowing us to project the gaze point-of-
regard to virtual cameras in the world (such as the left, center,
right images taken in as input by LBC (see Fig. 6).

We use data from N = 7 drivers, all of whom had
held a US driver’s license for more than one calendar year.
Each participant drove five routes, with the first being for
acclimatization to the VR simulator (this data was not used).
However, three participants were unable to complete all four
experimental routes due to motion-sickness in the simulator
and four routes had to be discarded due to improper data
recording. This data collection was approved by the relevant
institutional review board. In total, we used 17 routes with
about four minutes of driving data each or about 70 minutes
of data. This is much lower than the auto-generated data
used to train the LBC models, which is upwards of 350
minutes. We will release our collected gaze and driving
data in a format that will make them fully replayable in
the CARLA-based DReyeVR simulator allowing future users
to generate data from arbitrary virtual sensor configurations
with associated gaze. In rest of this paper, this dataset is
referred to as the DRVR dataset.

We also experiment with synthetic gaze generated using a
heuristic policy. Human gaze is expensive to collect, so sim-
ulated gaze allows us to investigate the efficacy of our gaze-
based supervision method with synthetic datasets. Since the
human gaze signal is modeled with a Gaussian distribution
centered at the fixation point, the heuristic method generates
fixation points using a probabilistic state machine (Fig. 4).
Intuitively, the simulated gaze checks which objects are in the
scene, fixates on an object for some time, or until the object
leaves the frame, and then fixates on a new object, favoring
more important objects. Specifically, fixation stays in a state
with initial probability p = 0.99 that decays by 0.01 every
timestep of the fixation. If the simulated gaze switches, it will
choose the next fixation from a hierarchy: [”lead vehicle”,
”pedestrian”, ”stop sign”, ”traffic light”, ”vanishing point”,
”oncoming vehicle”], where it selects the highest priority
object in the scene with probability u = 0.8, otherwise
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Fig. 4: Synthetic gaze generated by a state machine, shown
at time t = k: after a transition to a new object, it becomes
the current fixation. The process repeats at every timestep.

uniformly sampling from the lower priority objects. If the
object of fixation moves beyond a maximum distance of 20m
the agent resamples. The simulated gaze is generated at 2Hz,
the same frame rate as the data collection. Using this state
machine, we generated a driving dataset with synthetic gaze
(and hence, attention maps) of the same size and towns as
the DRVR dataset.

B. Gaze-based supervision via contrastive loss

As Fig. 2 shows, a large portion of the blur-based salience
lies on the base of the traffic light – i.e. when blur is applied
to this region, this causes the largest change in the LBC
model’s predicted output.

Our idea to provide gaze supervision comes from correct-
ing this misplaced salience. We use a triplet loss and gaze-
based salience as shown in Fig. 5. Given a policy network
ϕ and a triplet of inputs (anchor xa, positive sample x+,
negative sample x−), a typical triplet loss formulation is
below:

Lt(xa, x+, x−) = max ||ϕ(xa)− ϕ(x+)||2−
||ϕ(xa)− ϕ(x−)||2 + α, 0)

(1)

Here, α is the margin being enforced between the positive
and negative inputs in the output space of the network ϕ. We
follow the typical formulation where instead of computing
(and hence enforcing) this margin in the output space, we
compute it in the latent space of our policy network.

In our formulation, the original set of unblurred input
images (left, center, right, waypoint) constitutes the anchor
data point (above xa, ours: xorig). The negative input is
constructed by applying Gaussian blur (same parameters
as [22]) to important gazed-at scene locations (indicated
by attention maps) in the same set of images (above x+,
our formulation: xgaze). The corresponding positive point
has the same blur applied to the unimportant scene regions
(above x−, our formulation: complement of attention maps
x!gaze). The reasoning for this formulation is as follows:
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Fig. 5: Gaze-based supervision via triplet loss: during training, images with blur applied at non-gaze regions are moved
closer to the anchor than those with blur applied at gazed-at regions. Input data points are represented here with center
image but all three images are correspondingly blurred during training. See Fig 6 for the full input triplet in greater detail.
Blue shading is added to illustrate the blurred region (not present in training input).

Fig. 6: Example triplet in more detail with gaze-contingent
blur applied. In order (top-bottom): Anchor inputs (no blur),
Positive image (blur in non-attention regions), Negative
image (blur in attention regions). Blue shading is added to
illustrate the blurred region (not present in training input).

the most important regions for decision making for actions
lie in the gazed-at regions (as indicated by attention maps)
and the non-gazed-at regions do not contain information that
would change the driving decision. Hence, we can rewrite
Equation 1 as follows:

Lt(xa, x+, x−) = max( ||ϕ(xa)− ϕ(x+)||2
− ||ϕ(xa)− ϕ(x−)||2 + α, 0)

(2)

The triplet loss minimizes the distance between the anchor
and the positive point while maximizing the distance between
the anchor and the negative point. Hence, our loss enforces
that visual inputs blurred in locations unimportant to driving
should lead to a smaller change in network output than the
same blur applied in important regions. An example triplet
is shown in Fig. 6.

As explained in the paper [18], LBC training takes place
in two steps: first, by learning a privileged agent that learns
to drive with perfect sensor information and then, by using
it to supervise a sensorimotor model that learns to “see”
via RGB images. In this work, we focus primarily on

mitigating causal confusion in the sensorimotor model since
that is the one that learns the task with sensory inputs (and
greater potential for causal confusion) and because it is
the final deployed model. We also focus on fine-tuning the
sensorimotor model rather than training from scratch since
the amount of data with gaze supervision is much lower
than the auto-generated driving data. We perform an ablation
study by fine-tuning the sensorimotor agent using either the
driving control supervision loss used by the LBC authors [19]
(LBC) or via our proposed gaze-based triplet loss (Triplet).

In models that use the LBC loss, the choice of privileged
model to use as the teacher to the sensorimotor model during
training is another consideration. Here, we use the best-
performing privileged agent model released by the authors
of LBC (LBC best).

Finally, we must consider the data used for finetuning the
pre-trained model. We use two primary datasets: data from
the rule-based expert (RBE) and data from the human drivers
in the DReyeVR simulator (DRVR). The RBE dataset is the
one used by the original LBC training, containing about 600
minutes of trajectories driven by their handcrafted expert
autopilot that leverages the internal state of the simulator
to navigate through fine-grained hand-designed waypoints.
The RBE data did not contain any associated human gaze
since it was driven algorithmically. The DRVR dataset is
much smaller, totaling about 70 minutes, and was driven
by licensed US drivers. Every trajectory in this dataset
had human gaze associated with it. However, the DRVR
route contained only five unique routes, with repetitions of
each route by different drivers. To mitigate the catastrophic
forgetting effect of fine-tuning solely on the small DRVR
dataset, we also explore a mixed paradigm — RBE+DRVR
in Table. I. However, since the RBE data does not have
associated gaze labels, when we finetune on the mixed data
only the LBC control loss is active for trajectories sampled
from this dataset. The DRVR dataset trajectories have both
the LBC control supervision and our gaze-based supervision
enabled. When the two losses are combined, the total loss is
given by:

Losstot = LossLBC + λ× LossTriplet



Empirically, we found λ = 0.1 to lead to the best perfor-
mance and use it throughout our experiments below.

V. EXPERIMENTAL RESULTS

We evaluate the effectiveness of our gaze-based supervi-
sion method in two parts: First, we show that after applying
gaze supervision, the saliency of the model matches the
attention maps from human drivers’ gaze more closely. Sec-
ond, we show that the imitation agent’s driving performance
improves after applying gaze supervision.

A. Model saliency

We wish to first investigate the effect of gaze-based
supervision on the driving agent’s saliency. Here, we use the
same definition of model saliency as Sec. III-A and use the
modified version of Greydanus et al. [22] described therein
to compute saliency maps. For this experiment, we use routes
driven by human subjects since those have associated ground
truth gaze (and hence, attention) available for comparison.
To run the imitated driving agents on the human drivers’
driven routes, we replay those routes in the DReyeVR
simulator while storing the required sensor outputs. Then,
we use those sensor outputs as inputs to the driving agents
to calculate their saliency in an off-policy fashion. This is
done for both the pre-trained and the gaze-supervised model
to evaluate their salience comparatively. For this evaluation,
both human gaze-based attention maps and saliency maps
are first binarized and then compared to each other. We use
Intersection-over-Union as the metric to evaluate both the
sensitivity and the specificity of the salience maps compared
to the gaze-based attention maps. Higher IOUs indicate more
similarity of the agents’ salience (i.e., scene elements that
affected the agents’ actions) with the human gaze.

In our results (Table I), we see that fine-tuning with
gaze supervision does indeed improve the IOU of model
saliency maps (i.e., they better match the true attention maps
from human demonstrators). While fine-tuning solely with
human data and gaze supervision improves IOU the most,
it also leads to severely diminished driving performance.
Fine-tuning with Mixed data and both gaze and control
supervision achieves a good balance of both IOU and driving
performance. Lastly, using synthetic gaze does lead to good
driving performance but does not match the human demon-
strators gaze as well which is to be expected as they are
signals with different characterstics (synthetic gaze has less
noise and causal fixations with more probability).

Some qualitative examples of the LBC model’s salience
before and after gaze-based supervision can be seen in Fig. 7
(fine tuned on Mixed data). This shows that more of the
policy network’s actions are dictated by causal sets of pixels
(as indicated by gaze) post gaze supervision, as expected.

B. Driving performance

To evaluate the driving performance of our fine-tuned
models, we used the Longest6 benchmark [21]. The test set
contains 36 driving routes each with a unique combination of
weather and daylight conditions. The routes are spread over

TABLE I: Driving performance and Model saliency IoU on
the Longest6 [21] benchmark. Base model for all rows is
LBC [18]. Abbreviation guide: RBE = demonstrations from
LBC’s rule based expert driver; DRVR = demonstrations
from human drivers in the DReyeVR simulator; Mix = RBE
+ DRVR; Synth = RBE demonstrations with synthetic gaze

Training Training Loss DS IoU
approach data used (↑) (↑)

Pre-trained [18] RBE LBC 7.01 0.13

Human (gaze only) DRVR Triplet 0.42 0.22
Human (control & gaze) DRVR LBC+Triplet 4.82 0.19

Mixed (control only) Mix LBC 7.81 0.12
Mixed (control & gaze) Mix LBC+Triplet 9.61 0.18
Synthetic Synth LBC+Triplet 10.76 0.13
(control & gaze)

6 virtual towns, of which 2 are unseen in the training data.
We used the Longest6 benchmark instead of the CARLA
Leaderboard since the latter eval set is only available through
their online portal which restricts teams to 2 evaluations per
month making it unsuitable for ablation studies.

We use the DrivingScore metric from the Carla
Leaderboard, which is calculated as the average of
RouteCompletionPercentage × InfractionScore per
route. Here RouteCompletionPercentage is the percent-
age of the route completed by the driving agent, and
InfractionScore is a number in [0, 1] that encapsulates
the number of infractions committed by the driving agent.
InfractionScore starts at 1 for each route and progressively
decreases per infraction (we refer readers to [25] for details).
Hence, the maximum achievable DrivingScore would be
100.

From experiments investigating the agent’s driving perfor-
mance, the first noticeable trend is driving score degradation
due to fine-tuning on solely the human demonstrator driving
data (DRVR) with either solely gaze supervision and a
combination of gaze supervision and LBC driving control
supervision. This may be due to the much smaller size and
different characteristics of the DRVR data compared to that
auto-generated by the rule-based expert (RBE) which can
cause catastrophic forgetting of the original training of the
LBC model.

Expectedly, using just control supervision on the Mixed
(RBE + DRVR) dataset does improve performance over the
vanilla pre-trained LBC model since it sees more training
data than just the RBE dataset. However, finetuning using
Mixed data using the both gaze and control losses in con-
juction leads to the better driving performance than using
control loss alone.

Finally, using the Synthetic dataset (with gaze generated
by the Synthetic gaze state machine in Sec. IV-A) in the
combined loss paradigm leads to better performance than the
real gaze dataset. This can be explained by considering the
role of gaze as a causal signal proxy as discussed in Sec. III-
B. Namely, both real and synthetic gaze are a proxy for
causal signals but inherently the synthetic gaze is a ”cleaner”



Fig. 7: Model blur-based saliency example pairs (see Sec. III-A for salience computation details) showing LBC model
salience before and after gaze-based supervision. Within each pair, left images correspond to the pre-trained model with
no gaze-based training and right images correspond to our model fine-tuned on the ”Mix” dataset with gaze and control
supervision. Overall, the gaze supervised model’s salience lies more on causal scene elements such as traffic lights and the
space in front of the vehicle.

proxy since it is explicitly generated by us with object
fixations in mind compared to real gaze which is naturally
exhibited by human drivers. However, since synthetic gaze is
generated using privileged simulator information (exact 3D
location and semantic labels of objects) while generating the
training routes, it cannot be made available in the real world
with the same accuracy while real gaze can.

VI. DISCUSSION & FUTURE WORK

There are limits to the formulation of gaze-based causal
confusion mitigation. For instance, we assume that a col-
lection of local pixels is generated by a particular causal
variable, though some causal variables, such as lighting,
cannot be easily attached to any particular pixel or group
thereof. Additionally, we assume that the intervention of
blurring is a sufficient operation to ensure robustness, though
this pushes the perturbed images out of the normal image
space. In the construction of triplets for gaze supervision,
deleting objects that are not gazed at is a more direct way
of reflecting their absence in the positive sample than simply
blurring them out. This deletion could be done via techniques
such as partial convolutions to block out image regions as
in [26]. Finally, drivers can use their peripheral vision to
monitor stimuli that are away from their foveal vision [27].
Our method currently does not account for drivers using
solely their peripheral vision to attend to and monitor causal
groups of pixels, which is unlikely compared to a mix of
foveal and peripheral attention.

Lastly, the LBC model is now no longer a top performing
model on the leaderboard. Ideally, we would like to perform
our experiments with the newer, better performing models
such as Transfuser [21] or Learning from All Vehicles [18].
However, those models are much more data hungry than
LBC, requiring two magnitudes of data more than LBC and
performing very poorly when trained on LBC-sized data (e.g.
DS = 0.53 for Transfuser if trained with data comparable to
LBC training dataset size). In addition, these models incor-
porate additional input modalities and special heuristics that

complicate the data collection and integration while making
it more difficult to attribute causal confusion mitigation to
any one part of the algorithm. Ultimately, our goal is not
to top the CARLA leaderboard but to show that gaze-based
training can help IL agents better identify causal portions of
high-dimensional state spaces in a complex task like driving.
Our contribution is still valuable since in the real world, it
is only marginally more expensive to instrument a modern
vehicle with gaze-tracking hardware while collecting driving
demonstrations to train an autonomous driving system. This
is because eye gaze is exhibited by human drivers naturally
while performing the driving task and it can be used directly
(with straightforward pre-processing) in our method.

VII. CONCLUSION

We proposed a gaze-based supervisory formulation that
improves driving performance of IL agents by mitigating
causal confusion. Our method uses the insight that human
drivers’ gaze is associated with lower dimensional portions
of otherwise high dimensionsional inputs which are also
causally relevant. We collected a novel dataset of human
drivers who used a VR driving simulator to provide demon-
strations on CARLA routes while recording their eye gaze.
This data was used to finetune an IL driving model with
our gaze-based contrastive loss and improved its driving
performance. We commit to making our dataset public and
hope that it can spark new research directions combining
physiological signals and learning given its tight integration
with the widely used CARLA simulator. We see gaze based
causal confusion mitigation as a promising direction, not just
for driving but also for other domains where operator gaze
is associated with causal sub-spaces of the state space.
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